Exercise 8

(a) Prove that the usual formula solves the quadratic equation

$$
a z^{2}+b z+c=0 \quad(a \neq 0)
$$

when the coefficients a, b, and c are complex numbers. Specifically, by completing the square on the left-hand side, derive the quadratic formula

$$
z=\frac{-b+\left(b^{2}-4 a c\right)^{1 / 2}}{2 a}
$$

where both square roots are to be considered when $b^{2}-4 a c \neq 0$,
(b) Use the result in part (a) to find the roots of the equation $z^{2}+2 z+(1-i)=0$.

$$
\text { Ans. (b) }\left(-1+\frac{1}{\sqrt{2}}\right)+\frac{i}{\sqrt{2}}, \quad\left(-1-\frac{1}{\sqrt{2}}\right)-\frac{i}{\sqrt{2}}
$$

[A period is needed here instead of a comma.]

Solution

Part (a)

$$
a z^{2}+b z+c=0 \quad(a \neq 0)
$$

To complete the square, begin by dividing both sides by a.

$$
z^{2}+\frac{b}{a} z+\frac{c}{a}=0
$$

Add $\left(b^{2} / 4 a^{2}\right)$ to both sides, completing the square.

$$
z^{2}+\frac{b}{a} z+\frac{b^{2}}{4 a^{2}}+\frac{c}{a}=\frac{b^{2}}{4 a^{2}}
$$

The first three terms on the left can be factored like so.

$$
\left(z+\frac{b}{2 a}\right)^{2}+\frac{c}{a}=\frac{b^{2}}{4 a^{2}}
$$

Subtract both sides by c / a.

$$
\begin{aligned}
\left(z+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}}{4 a^{2}}-\frac{c}{a} \\
& =\frac{b^{2}-4 a c}{4 a^{2}}
\end{aligned}
$$

Multiply both sides by $4 a^{2}$.

$$
4 a^{2}\left(z+\frac{b}{2 a}\right)^{2}=b^{2}-4 a c
$$

Bring $4 a^{2}$ inside the parentheses.

$$
\begin{gathered}
{\left[2 a\left(z+\frac{b}{2 a}\right)\right]^{2}=b^{2}-4 a c} \\
(2 a z+b)^{2}=b^{2}-4 a c
\end{gathered}
$$

Consider the square root of $2 a z+b$ and then solve for z.

$$
\begin{gathered}
2 a z+b=\left(b^{2}-4 a c\right)^{1 / 2} \\
2 a z=-b+\left(b^{2}-4 a c\right)^{1 / 2}
\end{gathered}
$$

Therefore,

$$
z=\frac{-b+\left(b^{2}-4 a c\right)^{1 / 2}}{2 a}
$$

Part (b)
We will solve $z^{2}+2 z+(1-i)=0$ for z using the result from part (a). Here $a=1, b=2$, and $c=1-i$.

$$
\begin{aligned}
z & =\frac{-2+\left[2^{2}-4(1-i)\right]^{1 / 2}}{2} \\
& =\frac{-2+(4-4+4 i)^{1 / 2}}{2} \\
& =\frac{-2+(4 i)^{1 / 2}}{2}
\end{aligned}
$$

The magnitude and principal argument of $4 i$ are respectively $r=4$ and $\Theta=\pi / 2$. As a result, the square roots of $4 i$ are

$$
(4 i)^{1 / 2}=4^{1 / 2} \exp \left(i \frac{\frac{\pi}{2}+2 \pi k}{2}\right), \quad k=0,1 .
$$

The first one $(k=0)$ is

$$
(4 i)^{1 / 2}=4^{1 / 2} e^{i \pi / 4}=2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=\sqrt{2}(1+i),
$$

and the second one $(k=1)$ is

$$
(4 i)^{1 / 2}=4^{1 / 2} e^{i 5 \pi / 4}=2\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)=2\left(-\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right)=-\sqrt{2}(1+i)
$$

Therefore,

$$
\begin{array}{ll}
z=\frac{-2+\sqrt{2}(1+i)}{2} \quad \text { or } \quad z=\frac{-2-\sqrt{2}(1+i)}{2} \\
z=-1+\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} \quad \text { or } \quad z=-1-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}} .
\end{array}
$$

